93.185.164.20
Adiabatic computing in the knowledge economy
Reviews
Readers community rating
0.0 (0 votes)


Views
2199


Downloads
607
UDC
33 Экономика. Народное хозяйство. Экономические науки
Date of publication
20.11.2018
Public year
2018
Adiabatic computing in the knowledge economy
Annotation
This article shows that typical for the knowledge economy Optimization problem with Boolean variables may be reduced to the form suitable for solving by the quantum annealing method. That is the problem of minimization for the Ising objec-tive function without restrictions. Bringing to the required form (Ising objective function) means replacing all restrictions with penalty functions containing only lin-ear and quadratic terms. This form is typical for the knowledge economy optimization problem containing balance constraints with the maximum operation instead of the usual addition. In content, this means that once acquired knowledge can be used as many times as needed, and the knowledge gained again adds nothing to the existing knowledge. The proposed approach in principle allows to reduce some econo-my problems to a suitable form for computers of the D-Wave line (the really work-ing quantum computers using the quantum annealing method).
About authors
Anatoly Kozyrev
Scientific Concept Adviser
Central Economics and Mathematics Institute, Russian Academy of Sciences; Russia
References

1. Danilov V.I., Koshevoj G., Sotskov A.I., 2003. Ehkonomicheskoe ravnovesie na rynke intellektual'nykh produktov // Ehkonomika i matematicheskie metody, t. 29, № 4, 2003 g. s. 606—616.

2. Kozyrev A.N., 1999. Algebraicheskie svojstva informatsii i rynok // Nauchno-tekhnicheskaya informatsiya, ser. 1, – №5 – 1999, s.15-20

3. Kozyrev A.N. (2011) Modelirovanie NTP, uporyadochennost' i tsifrovaya ehkonomika// Ehkonomika i matematicheskie metody, t. 47, № 4, 2011. – s.131-142

4. Makarov V.L., 1973. Balans nauchnykh razrabotok i algoritm ego resheniya // Sb.st. Optimizatsiya, Novosibirsk, 1973, vyp.11(28), S.37-45

5. Application of quantum annealing to training of deep neural networks. arXiv:1510.06356, 18 pages. DOI:10.1103/RevModPhys.90.015002

6. Arrow, K. J., 1962. Economic welfare and the allocation of resources for invention. The Rate and Direction of Inventive Activity: Economic and So-cial Factors. Princeton University Press, Princeton NJ, 609–625.

7. Ba, S., Stallaert, J., 2001. Whinston A.B., Optimal Investment in Knowledge Within a Firm Using a Market Mechanism// Management Science, 2001, 47(9), 1203-1219. Phys. Rev. Lett. 111, 130505.

8. Bian, Z., Chudak, F., Israel, R., Lackey, B., Macready, W.G., Roy, A., 2014. Discrete optimization using quantum annealing on sparse Ising models. Front. Phys. 2 Article 56.

9. , S., Ronnow, T.F., Isakov, S.V., Wang, Z. Wecker, D. Lidar, D.A., Martinis, J.M., Troyer, M. 2014. Evidence for quantum annealing with more than one hundred qubits. Nature Physics 10, 218-224. DOI: 10.1038/nphys2900

10. Henderson, M. Novak, J., Cook, T. 2018. Leveraging adiabatic quantum computation for election forecasting. arXiv:1802.00069

11. A comparison of approaches for finding minimum identifying codes on graphs. Quantum Inf. Process. 15, 1827-1848.

12. Johnson, M.W. et al., 2011. Quantum annealing with manufactured spins. Nature 473, 194-198. DOI: 10.1038/nature10012

13. Karimi, K., Dickson, N.G., Hamze, F., Amin, M.H.S., Drew-Brook, M., Chudak, F. A., Bunyk, P. I., Macready, W. G. Rose, G., 2012. Investigating the performance of an adiabatic quantum optimization processor. Quantum Inf. Process. 11, 77-88.

14. Lucas, A., 2014. Ising formulations of many NP problems. Front. Phys. 2 Article 5, 15 pages. DOI:10.3389/fphy.2014.00005

15. Martin-Mayor V., Hen, I. 2015. Unraveling quantum annealers using classical hardness. Scientific Reports 5, 15324.

16. Experimental evaluation of an adiabatic quantum system for combinatorial optimization, Proceedings of the ACM International Conference on Computing Frontiers, Article No. 23, ACM Press. DOI:10.1145/2482767.2482797

17. McGeoch, C.C. 2014. Adiabatic Quantum Computation and Quantum Annealing: Theory and Practice, Morgan & Claypool.

18. Error-corrected quantum annealing with hundreds of qubits. Nature Communications 5, Article No. 3243.

19. Santoro, G. E., Tosatti, E. 2006. Optimization using quantum mechanics: http://www.dwavesys.com/sites/default/files/weightedmaxsat_v2.pdf

Полная версия доступна только подписчикам
Подпишитесь прямо сейчас