1. Danilov V.I., Koshevoj G., Sotskov A.I., 2003. Ehkonomicheskoe ravnovesie na rynke intellektual'nykh produktov // Ehkonomika i matematicheskie metody, t. 29, № 4, 2003 g. s. 606—616.
2. Kozyrev A.N., 1999. Algebraicheskie svojstva informatsii i rynok // Nauchno-tekhnicheskaya informatsiya, ser. 1, – №5 – 1999, s.15-20
3. Kozyrev A.N. (2011) Modelirovanie NTP, uporyadochennost' i tsifrovaya ehkonomika// Ehkonomika i matematicheskie metody, t. 47, № 4, 2011. – s.131-142
4. Makarov V.L., 1973. Balans nauchnykh razrabotok i algoritm ego resheniya // Sb.st. Optimizatsiya, Novosibirsk, 1973, vyp.11(28), S.37-45
5. Application of quantum annealing to training of deep neural networks. arXiv:1510.06356, 18 pages. DOI:10.1103/RevModPhys.90.015002
6. Arrow, K. J., 1962. Economic welfare and the allocation of resources for invention. The Rate and Direction of Inventive Activity: Economic and So-cial Factors. Princeton University Press, Princeton NJ, 609–625.
7. Ba, S., Stallaert, J., 2001. Whinston A.B., Optimal Investment in Knowledge Within a Firm Using a Market Mechanism// Management Science, 2001, 47(9), 1203-1219. Phys. Rev. Lett. 111, 130505.
8. Bian, Z., Chudak, F., Israel, R., Lackey, B., Macready, W.G., Roy, A., 2014. Discrete optimization using quantum annealing on sparse Ising models. Front. Phys. 2 Article 56.
9. , S., Ronnow, T.F., Isakov, S.V., Wang, Z. Wecker, D. Lidar, D.A., Martinis, J.M., Troyer, M. 2014. Evidence for quantum annealing with more than one hundred qubits. Nature Physics 10, 218-224. DOI: 10.1038/nphys2900
10. Henderson, M. Novak, J., Cook, T. 2018. Leveraging adiabatic quantum computation for election forecasting. arXiv:1802.00069
11. A comparison of approaches for finding minimum identifying codes on graphs. Quantum Inf. Process. 15, 1827-1848.
12. Johnson, M.W. et al., 2011. Quantum annealing with manufactured spins. Nature 473, 194-198. DOI: 10.1038/nature10012
13. Karimi, K., Dickson, N.G., Hamze, F., Amin, M.H.S., Drew-Brook, M., Chudak, F. A., Bunyk, P. I., Macready, W. G. Rose, G., 2012. Investigating the performance of an adiabatic quantum optimization processor. Quantum Inf. Process. 11, 77-88.
14. Lucas, A., 2014. Ising formulations of many NP problems. Front. Phys. 2 Article 5, 15 pages. DOI:10.3389/fphy.2014.00005
15. Martin-Mayor V., Hen, I. 2015. Unraveling quantum annealers using classical hardness. Scientific Reports 5, 15324.
16. Experimental evaluation of an adiabatic quantum system for combinatorial optimization, Proceedings of the ACM International Conference on Computing Frontiers, Article No. 23, ACM Press. DOI:10.1145/2482767.2482797
17. McGeoch, C.C. 2014. Adiabatic Quantum Computation and Quantum Annealing: Theory and Practice, Morgan & Claypool.
18. Error-corrected quantum annealing with hundreds of qubits. Nature Communications 5, Article No. 3243.
19. Santoro, G. E., Tosatti, E. 2006. Optimization using quantum mechanics: http://www.dwavesys.com/sites/default/files/weightedmaxsat_v2.pdf